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Introduction Factorization-based Filtering Modeling Results Conclusions

Objective

• Blend data from sensors

◦ inertial measurement unit
◦ star camera
◦ altimeter
◦ velocimeter
◦ terrain camera

• Produce estimates of position, velocity, and attitude

◦ accurate
◦ precise
◦ consistent
◦ robust

• Work within minimum variance estimation framework

◦ Kalman filter
◦ extended Kalman filter
◦ unscented Kalman filter
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Introduction Factorization-based Filtering Modeling Results Conclusions

The Linear Problem

• Consider the linear state-space model

xk = Fk−1xk−1 +wk−1

zk = Hkxk + vk

• The well-known Kalman filter produces the conditional mean and
covariance through a two-stage recursion:

Initial Cond.

P+
k−1 = P0

Cov. Prop. P−
k = Fk−1P

+
k−1F

T
k−1 +Qk−1

Cov. Update P+
k = P−

k −KkHkP
−
k
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Covariance Constraints

• By definition, the covariance matrix must be

◦ symmetric

33

◦ positive definite

7

• A proper filtering recursion should always maintain these properties.

• For the linear case, where the Kalman filter is theoretically exact, do
these properties hold?
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• By definition, the covariance matrix must be

◦ symmetric 33
◦ positive definite

7

• A proper filtering recursion should always maintain these properties.
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Symmetry: General Comment

In the worst case, brute-force symmetrization can be used:

Pk =
1

2
(Pk + P T

k )
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• A proper filtering recursion should always maintain these properties.

• For the linear case, where the Kalman filter is theoretically exact, do
these properties hold?

Positive Definiteness: Update

Consider the measurement update that results from

Hk =

[
1 1 1
1 1 1 + δ

]
, P−

k = I3 , and Rk = δ2I2

where δ2 < εroundoff but δ > εroundoff.
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Positive Definiteness: General Comment

◦ The update can fail because of numerical issues.

− also true in propagation

◦ Enforcing positive definiteness is very challenging.

◦ Can be mitigated with factorization-based filtering methods.
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Introduction Factorization-based Filtering Modeling Results Conclusions

Loss of Positive Definiteness

• Positive definiteness can be lost during filtering

◦ Large prior uncertainty + precise measurements

− commonly encountered in landing navigation
− uncertainties “grow” unabated for long periods of time
− precise data, such as altimetry, becomes available

◦ Condition number of the covariance matrix

− commonly encountered in large-state filters
− estimate position, velocity, attitude, biases, etc.
− units of states become important, but want to be agnostic to this

• Factorization-based filtering mitigates loss of positive definiteness

◦ Avoid working with covariance
◦ Work with factors of covariance
◦ Establish propagation/update equations for the factors
◦ Examples:

− UDU
− Cholesky
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Introduction Factorization-based Filtering Modeling Results Conclusions

Methods of Factorization-based Filtering

• Originated with Potter’s idea of the square-root filter
◦ Replace covariance with Cholesky factor
◦ Propagate and update Cholesky factor
◦ No process noise + scalar measurements

• UDU Factorization
◦ Factor P as UDUT

◦ U is upper diagonal with ones on the diagonal
◦ D is diagonal
◦ Propagate and update U and D

− Modified Weighted Gram-Schmidt orthogonalization
− Carlson rank-1 updates

• Cholesky Factorization
◦ Factor P as SST

◦ S is lower triangular
◦ Propagate and update S

− QR decomposition
− Cholesky rank-m downdate
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◦ D is diagonal
◦ Propagate and update U and D

− Modified Weighted Gram-Schmidt orthogonalization
− Carlson rank-1 updates

• Cholesky Factorization
◦ Factor P as SST

◦ S is lower triangular
◦ Propagate and update S

− QR decomposition
− Cholesky rank-m downdate
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The Cholesky Square-Root Filter

• For the nonlinear state-space model

xk = f(xk−1) +wk−1

zk = h(xk) + vk

• The Cholesky square-root filter is given by the recursion:

Mean Prop. m−
k = f(m+

k−1)

SRF Prop. S−
k = qr{[Fk−1S

+
k−1 | Tk−1]

T }T

Innov. SRF Yk = qr{[HkS
−
k | Lk]

T }T

Cross Cov. Ck = S−
k

[
HkS

−
k

]T
Update Factors Uk = Ck(Y

−
k )T

Kalman Gain Kk = UkY
−1
k

Mean Update m+
k = m−

k +Kk(zk − h(m−
k ))

SRF Update S+
k = cholupdate{(S−

k )
T ,Uk,−1}T

McCabe, et al. Comparison of Factorization-based Filtering for Landing Navigation 9 / 27



Introduction Factorization-based Filtering Modeling Results Conclusions

The Cholesky Square-Root Filter

• For the nonlinear state-space model

xk = f(xk−1) +wk−1

zk = h(xk) + vk

• The Cholesky square-root filter is given by the recursion:

Mean Prop. m−
k = f(m+

k−1)

SRF Prop. S−
k = qr{[Fk−1S

+
k−1 | Tk−1]

T }T

Innov. SRF Yk = qr{[HkS
−
k | Lk]

T }T

Cross Cov. Ck = S−
k

[
HkS

−
k

]T
Update Factors Uk = Ck(Y

−
k )T

Kalman Gain Kk = UkY
−1
k

Mean Update m+
k = m−

k +Kk(zk − h(m−
k ))

SRF Update S+
k = cholupdate{(S−

k )
T ,Uk,−1}T

McCabe, et al. Comparison of Factorization-based Filtering for Landing Navigation 9 / 27



Introduction Factorization-based Filtering Modeling Results Conclusions

Comments on the Methods

• Cholesky Factorization

◦ guarantees symmetry of the covariance matrix
◦ can guarantee positive definiteness
◦ requires square root operations
◦ quite simple, structurally

• UDU Factorization

◦ guarantees symmetry of the covariance matrix
◦ simple check for positive definiteness
◦ does not require square root operations
◦ more complicated, structurally
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Trajectory
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IMU Model

• Inertial Measurement Unit output is given by

∆vm,k = ∆vk + bv +wv,k

∆θm,k = ∆θk + bθ +wθ,k

where

◦ ∆vk is the true, integrated, non-gravitational acceleration
◦ ∆θk is the true, integrated angular velocity

• Sensor specifications

Accelerometer
◦ Bias (1σ) = 300µg
◦ Noise (1σ) = 35µg/

√
Hz

◦ Frequency = 40 Hz
◦ Active: always

Gyro
◦ Bias (1σ) = 1◦/hr
◦ Noise (1σ) = 0.07◦/

√
hr

◦ Frequency = 40 Hz
◦ Active: always
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Altimeter Model

• Spherical Altitude measurement is given by

zk = (‖rialt,k‖ − rsph) + balt + valt,k

where

rialt,k = riimu,k + T i
c,kr

c
alt/imu

• Sensor specifications

◦ Bias (1σ) = 0.5 m
◦ Noise (1σ) = [500, 5] m
◦ Frequency = 10 Hz
◦ Active: h ≤ 15 km
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Star Camera Model

• Quaternion Star Camera measurement is given by

z̄k = q̄err,k ⊗ q̄scc ⊗ q̄ci,k

where

q̄err,k =

[
sin

(
1
2‖θerr,k‖

) θerr,k
‖θerr,k‖

cos
(
1
2‖θerr,k‖

) ]
and θerr,k = bsc + vsc,k

• Sensor Specifications

◦ Bias (1σ) = 10′′

◦ Noise (1σ) = 30′′

◦ Frequency = 1 Hz
◦ Active: when not thrusting
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Monte Carlo Comparison

• Assess statistical consistency

◦ 1000 Monte Carlo trials

◦ Resample initial states and noises

◦ Compute sample covariance

◦ Compare to single run performance

◦ Look at full covariance, UDU factorized, and Cholesky factorized filters

• Observations

◦ Some full covariance trials failed

◦ All UDU and Cholesky factorized trials successful

◦ Translational uncertainty growth before altimeter turns on

◦ Rotational uncertainty growth after star camera turns off

− errors caused by sampling
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Monte Carlo: Position

−2

−1

0

1

2
·104

u
[m

]

−2

−1

0

1

2
·104

v
[m

]

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
−2

−1

0

1

2
·104

MET [sec]

w
[m

]

McCabe, et al. Comparison of Factorization-based Filtering for Landing Navigation 16 / 27



Introduction Factorization-based Filtering Modeling Results Conclusions

Monte Carlo: Velocity
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Monte Carlo: Attitude
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Monte Carlo: Accel. Bias
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Monte Carlo Comparison

• Assess statistical consistency

◦ 1000 Monte Carlo trials

◦ Resample initial states and noises

◦ Compute sample covariance

◦ Compare to single run performance

◦ Look at full covariance, UDU factorized, and Cholesky factorized filters

• Observations

◦ Some full covariance trials failed

◦ All UDU and Cholesky factorized trials successful

◦ Translational uncertainty growth before altimeter turns on

◦ Rotational uncertainty growth after star camera turns off

− errors caused by sampling
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Terminal Descent Analysis

• More in-depth analysis during terminal descent

◦ Same simulation, same configuration
◦ Enhanced view in terminal descent

• Observations

◦ Full covariance

− Conservative in position uncertainty
− Overly confident in attitude uncertainty
− Failures due to loss of positive definiteness

◦ UDU factorized

− Back and forth in position uncertainty
− Back and forth in attitude uncertainty
− No failures due to loss of positive definiteness

◦ Cholesky factorized

− Conservative in position uncertainty
− Back and forth in attitude uncertainty
− No failures due to loss of positive definiteness
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Grid Comparison: Position
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Grid Comparison: Attitude
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Terminal Descent Analysis

• More in-depth analysis during terminal descent

◦ Same simulation, same configuration
◦ Enhanced view in terminal descent

• Observations

◦ Full covariance

− Conservative in position uncertainty
− Overly confident in attitude uncertainty
− Failures due to loss of positive definiteness

◦ UDU factorized

− Back and forth in position uncertainty
− Back and forth in attitude uncertainty
− No failures due to loss of positive definiteness

◦ Cholesky factorized

− Conservative in position uncertainty
− Back and forth in attitude uncertainty
− No failures due to loss of positive definiteness
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Conclusions

• Comparison of different filtering approaches for descent navigation

◦ Full covariance

− brute-force symmetrization
− no guarantee on positive definiteness

◦ UDU factorization

− guaranteed symmetry
− easy check for positive definiteness

◦ Cholesky factorization

− guaranteed symmetry
− can guarantee positive definiteness

• When processing IMU, altimeter, and star camera data

◦ observed failures in full covariance filters
◦ similar consistency performance in UDU and Cholesky

• Which filter should you use?

◦ vector vs. scalar processing of data
◦ computational resources available
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